CONFERENCE PROCEEDINGS

6th International Conference on Envirotech, Cleantech and Greentech (ECG),
Hong Kong

October 20 -21, 2016

Conference Venue
REGAL ORIENTAL HOTEL (HONG KONG)

Email: info@wasrti.org
Keynote Speaker

DR. AMBRESH PRABHAKAR AMBALGI
Mangalore University, Mangalagangothri
Optimization using Response Surface Methodology for Chromium(VI) removal from wastewater by Manganese Oxide Nanoparticles

Nirmal Kumar Srivastava
Department of Chemical Engineering, National Institute of Technology, Jalandhar, Punjab

Abstract

Water is one of the essential constituents of various life forms on earth since its creation, evolution and continuity. Though, both Hexavalent Chromium and Trivalent Chromium exist in industrial wastewater, but Cr(VI) is 500 times more toxic and more soluble than Cr(III). In the present work, studies have been performed on manganese oxide nanoparticles for the removal of Chromium(VI) from wastewater. The precursors used in the preparation of MnO nanoparticles are Manganese Chloride Tetrahydrate [MnCl₂·4H₂O] / Manganese Acetate Tetrahydrate [Mn(CH₃COO)₂·4H₂O] and Oxalic acid [C₂H₂O₄·2H₂O] with Ethanol as a solvent. The sample prepared from manganese chloride was labeled as “sample 1” and that from manganese acetate was labeled as “sample 2”. The characterization of MnO nanoparticles was carried out using SEM, XRD and EDX to determine crystalline phase of MnO nanoparticles. The effect of initial Chromium ion concentration, adsorbent dosage and pH in the removal efficiency was studied. The hexavalent Chromium in the supernatant was measured with diphenylcarbazide using UV-Visible double beam spectrophotometer as described in the literature. The Freundlich and Langmuir adsorption isotherms, pseudo first order and pseudo second order reaction kinetics and intraparticle diffusion model studies were performed. Optimization of processes was done by Response Surface Methodology (RSM). The pure-quadratic model equation was used in the optimization process of the experimental data to maximize the adsorption of Chromium(VI). Three independent test variables are chosen for statistical experiment design i.e. adsorbent dose (X₁, g/L), pH (X₂) and initial Chromium(VI) ion concentrations (X₃, mg/L). A 3-level four factor Box-Behnken experimental design has been used in the optimization process during this study. It can be concluded from the above study that MnO nanoparticles as an adsorbent have the potential for the removal of Chromium(VI) from wastewater. The optimum conditions obtained for the removal of Cr(VI) from wastewater using response surface methodology were synchronized well with the experimental data. This approach further proved to be very effective and time saving as the total number of experiments to be performed could be reduced significantly.

Keywords: Chromium, Wastewater, Adsorption, Isotherms, Kinetics, Optimization, Response Surface Methodology

Study on the Photooxidation and Biological Reactions of Bisphenol A in Aqueous Solutions by UV/Oxidants Processes

Yung-ShuenShen
Holistic Education Center, Mackay Medical College, Taipei City, Taiwan, ROC.

Abstract

The decomposition of bisphenol A in aqueous solutions by advanced oxidation processes (AOPs) - UV/H₂O₂ and UV/Na₂S₂O₈ under various operational factors (pH,
UV light intensity, initial concentration of BPA, and dose of oxidants) was studied to evaluate the treatment efficiency. The biotoxicity assay in term of HepG2 cells was applied to the BAP treated wastewaters to be as an indicator of health risk.

The experimental results revealed that both UV/H2O2 and UV/Na2S2O8 processes can decompose Bisphenol A (BPA) effectively during 90 minutes. Removal rates of BPA by UV/Na2S2O8 were found to be larger than those by UV/H2O2. The removals of BPA increase with increasing UV light intensity and decreasing with initial concentration of BPA. The solution pH values affect significantly on the reaction rates of BPA by AOPs, the optimum pH was found to be at neutral conditions by UV/H2O2 compared to those at pH 3 and pH 11 by UV/Na2S2O8. The mineralization efficiency of BPA by UV/Na2S2O8 was larger than those by UV/H2O2 even though at low doses of oxidants.

Reaction stoichiometric efficiencies (RSEs) were to be determined to evaluate the degree utilization of oxidants and found to be dependent on various operational conditions in the oxidation systems. The EE/O values decreases with increasing the initial concentration of BPA. The chemical kinetic equations for the decomposition of BPA by the two AOPs were established and found that the order of UV light intensity by UV/H2O2 was larger than it by UV/Na2S2O8 but the order of dose of oxidant by UV/H2O2 was smaller than it by UV/Na2S2O8. In the UV/Thermal/Na2S2O8 system, the treatment efficiency of BPA increases with decreasing temperature. The BPA treated wastewaters by UV/H2O2 and UVNa2S2O8 were found to be toxic to HepG2 cells based on the results of biotoxicity assay especially in the UV/Na2S2O8 system possible due to the residual effect of SPS to kill HepG2 cells.

Figure 1 reveals that the decomposition rates of BPA in aqueous solutions by UV/H2O2 process increase with increasing with UV light intensities because of more OH· radicals generated from the excitement of H2O2 by larger UV light intensities.
Figure 1. The decomposition rates of BPA in aqueous solutions by UV/H$_2$O$_2$ process at various UV light intensities

In UV/H$_2$O$_2$ system, the contribution on the decomposition of BPA can be attributed to UV direct photolysis and OH· indirect oxidation generated from the excitation of H$_2$O$_2$ by UV irradiation. The pseudo-first order reaction rate constants of the two driving forces are referred to be $k_{uv\text{only}}$ and $k_{OH·}$. The two reaction rate constants in the reaction system can be supposed to be the linear summation (Shen et al., 1995), thus:

$$k_{UV/H_2O_2} = k_{uv\text{only}} + k_{OH·}$$

where k_{UV/H_2O_2}: pseudo-first order rate constant of BPA by UV/H$_2$O$_2$ process

$k_{uv\text{only}}$: pseudo-first order rate constant of BPA by UV direct photolysis

$k_{OH·}$: pseudo-first order rate constant of BPA by OH· indirect oxidation

The pseudo-first order reaction rate constants of BPA in UV/H$_2$O$_2$ systems at various UV light intensities are summarized in Table 1. It was found that the decomposition rates of BPA increased with increasing UV light intensity and the values of $k_{OH·}$ are apparently larger than those of $k_{uv\text{only}}$. The main contribution on the decomposition of BPA in aqueous solutions in UV/H$_2$O$_2$ systems is determined to be above 99% by the OH· indirect oxidation.

Table 1. The pseudo-first order reaction rate constants of BPA in UV/H$_2$O$_2$ systems
Keywords: photooxidation, bisphenol A, Persulfate, advanced oxidation processes (AOPs)

Synthesis of large area high quality graphene using CVD for solar applications: XPS analysis

Ranjeet Kumar Brajpuriya
Amity Institute of Nanotechnology, Amity University Haryana-122413, Gurgaon, India.

Today graphene- two dimensional, single atomic layer of covalently bonded material with honeycomb structure, because of its remarkable properties is considered as a promising material that could be the base for future generations of low-power, faster, smaller and smarter electronic devices [1-3]. It has all the potential industrial uses from high speed computing devices to efficient solar cells, flexible electronic displays to gas sensors, etc. However, the commercial exploitation of graphene is still a challenge because it is critical to synthesize large area graphene with high throughput and reliability. The key to solving this challenge requires us to develop synthesis and transfer methods to employ in the fabrication and transfer of large area single layer graphene films with an optimal degree of control. Recently, extensive research efforts focused on graphene synthesis using distinct methods have succeeded in large area synthesis. Among many methods, considering its low cost, scalability and high efficiency, we found chemical vapor deposition (CVD) method to be the most appropriate approach for producing graphene for large-scale manufacture. In this paper, therefore, our aim is to obtain improved and sustainable growth method of large area high-quality graphene. The cleanliness and the quality of the film are checked by x-ray photoelectron spectroscopy. D-parameter (19.5 eV) obtained from carbon Auger feature (C-KVV) and dominated single peak at 284.5 eV assigned to the \(sp^2 \) graphitic C=C confirms the film deposited on Cu is graphene is clean with no contaminants.

* The author (R. B) would like to acknowledge ENEA, Rome, Italy for providing the
<table>
<thead>
<tr>
<th>International Research Fellowship for this work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lalejin Pottery: A Sustainable Suggestion in Olive Oil Packaging</td>
</tr>
</tbody>
</table>
| **Mahshid Tashakori**
| University of Bualisina, Hamedan, Iran |

ABSTRACT

Nowadays sustainable development debates are becoming the central attention in governments, businesses and societies. The urgency of sustainable design is also becoming internationally recognized as a vital contribution towards a sustainable future. Sustainable design aims in coordinating design of products and services with sustainable development, offering several techniques and methods. Regarding environmental, social and financial considerations, packaging design is brought in line with sustainable development framework.

The current study was conducted in 2011 purposing innovative design of an extra-virgin local olive oil packaging which simultaneously has distinctive aesthetic and functional specifications, and meets sustainable design principles.

Hypothesis of the research questions the possibility of increasing sustainability of olive oil packaging, using a new material in the field. Sustainable design methods and criteria are applied in assessment of current and suggested materials.

To investigate the hypothesis, two methods of Sustainable Design are used: Life Cycle Analysis, and Triple Bottom Line of Sustainability, which assess sustainability of the process. Eventually a sustainability score is gained by each material.

This survey uses desk and field research methods, quantitative and qualitative tools which discard that pottery could be a more sustainable choose over other options for olive oil packaging.

Keywords: sustainable development; sustainability; sustainable design; Life Cycle Analysis; Triple Bottom Line of Sustainability; pottery

<table>
<thead>
<tr>
<th>Sustainability Guide to the Urban Redevelopment of Tourism Gracious Indian City</th>
</tr>
</thead>
</table>
| **Ar. Anoop Kumar Sharma**
| Department of Architecture and Landscape Design, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir-India |

Abstract

Introduction: City’s Urban Infrastructure icons are the Arteries & veins of the modern society. All cities are the outcome of rigorous social interaction & beliefs over a large period of time. One of such Social belief driven town is KATRA, situated in Jammu & Kashmir (India); targeted through this paper.

Katra is very close to Our Present hon’ble PM Sh. Narendra Modi’s only recently, he has inaugurated the railway line upto this religious Town. Katra town is world
famous for the rich religious history attached to it as it forms the base town (Camp) of Trikuta Hills upon which (12 kms away from base town) the Holy Shrine of Goddess MaaVaishno Devi is believed to be located. Clearly, this shrine dictates the development of all sorts in the holy town Katra. Every year Millions of Pilgrims from around the globe visit the shrine & hence they witness the Katra Town too. Additionally, The Katra town is the major contributor of J&K (Jammu & Kashmir State) economy & India at Large.

Methodology: In this paper, existing urban development scenario of Katratown shall be presented present with its critical analysis. Petinently, critical analysis of the Urban Infrastructure off-late of the Katra Town shall be deliberated upon with in sustainability parameters particularly with the amount of floating population it receives. A Brief model shall also be presented to comment & propose its future urban development & redevelopment of this religious Town Katra which must not compromise with social beliefs & the ever-increasing economic & infrastructural burden on its Architecture.

Focus of Study: India is known for pilgrimage tourism. Having said it, Katra is bound to live till eternity because of the religious beliefs attached to it. Whereas, ecology, human comfort & the quality of life in the base camp-Katra town is altogether neglected in present development. Thus making the city avoidable for a longer stay for tourists & unsafe. In addition, surroundings areas are also falling into prey with the obvious urban extensions due to infrastructural additions (pilgrims burden). The Focus of the study is to guide these urban extensions development with in Ecological & Sustainable parameters so that Katra’s urban development should be a thing to cherish for one and all in the future years to come from all legible social, cultural, economy & environmental point of views that is what sustainability aims for.

Keywords: Development, City, Urban, Infrastructure, Ecology, sustainability, Religious, Pilgrims, Katra.

Estimation of Durability Of Rice Grains Using Sensors And Mobile Technology

K.Kishore Kumar Reddy. N.G.

Abstract

Ensuring the dryness of Rice Granules is essential for the storage of Rice. The moisture content present in the rice granules deteriorates the quality and toughness that is expected from the the final produce. Existing systems that were put forth to find the moisture content of rice granules are not efficient enough. Their throughput is influenced by a variety of factors such as material density and packing. The official oven method consumes more time. The moisture content present in the rice granules is calculated using the equilibrium relative humidity technique [ERH]. The equilibrium relative humidity, and temperature, of rice granules were measured by using temperature and relative humidity sensors. Sensors are calibrated to improve
accurateness and precision. The moisture content was calculated by using an equilibrium moisture content model. The data collected from the sensors are sent to the user which gives intimation about the prevailing conditions in the storage place as a message. According to the message, the prevention methods are listed. The error of the moisture content determined with this method was within 0.5% w.b. at moisture.

Keywords: Rice Granules, Equilibrium Relative Humidity, Moisture Content, Storage.

|Jennifer Mojica
GICICRST1607052| Nutrient Dynamics in Hydroponic Production of Mint (menthaarvensis L.) using Household Greenhouse Module
Jennifer Mojica
Central Luzon State University, Philippines|

Abstract

Hydroponic nutrients are the basis behind the success of any indoor garden. By focusing on the two most important solution factors - nutrient balance and nutrient concentration, the hydroponic solution will give maximum growth and yields. Hence, this study looked at the dynamics of nutrient solutions for mint production, in terms of location and time, in a household hydroponics system module. The systems’ environment parameters such as pH, temperature, electrical conductivity and total dissolved oxygen were also monitored and their effects to nutrient dynamics had been examined. Based on the data gathered, nutrients in a household set up hydroponics varied as they traveled from the tank, growing tubes, raft cultures until they reached the collection point. Likewise, changes in nutrients solutions happened in time. Moreover, with regard to results in nutrient dynamics in different collection points, it was found out that it was only during the first and third weeks when the highest nutrient concentrations were observed in control point. In week 2 and week 4, highest concentration values were seen in collection points 2 and 1, respectively. In terms of nutrient dynamics at different times there were no significant difference on the following nutrient concentrations: copper (Cu), iron (Fe) and manganese (Mn) while significant difference from Weeks 1 to 4 was observed in calcium (Ca), magnesium (Mg) and nitrate nitrogen (NO\textsubscript{3}-N). The presence of 11 common nutrient deficiencies observed in the hydroponics production of mint could be attributed to deficiencies in total nitrogen, potassium, phosphorous and iron.

Keywords: hydroponics, Menthaarvensis L., mint, nutrient dynamics, nutrient
Genetic analysis an *in vitro* selection for drought tolerance in wheat (*Triticum aestivum* L.)

Hend Mohamed El-SayedMandour
National Research Centre, Dokki,Giza,Egypt

Abstract

Selection for drought tolerance of fifteen wheat genotypes (five parents and their ten F₁ hybrids) was performed under laboratory. Three different callus induction media were used to determine the optimum hormone balance for callus induction from mature embryos of wheat genotypes and also to study the genetic response of the studied wheat genotypes to callus induction. MS media supplemented with different concentrations of polyethylene glycol (PEG) were used to evaluate the obtained calli for drought tolerance. Then the drought stressed calli were then transferred to plant regeneration medium for studying their ability to regenerate.

M2 medium (2mg/l 2,4D+300 mg/l casein hydrolysate) gave the highest callus induction frequency (85.5%) followed by M1 (2mg/l 2,4D) medium (85%) and M3 (2mg/l 2,4D +4 mg/l AgNo3) medium (81.6%). The differences between the three callus induction media were significant for all characters except callus induction frequency (CIF %) and M2 medium was the best media for callus induction.

Regeneration was obtained in all genotypes under 0, 5 and 10% PEG, and in most genotypes under 15% PEG, but was completely absent under 20% PEG.

Data obtained revealed that the parental cultivars, Giza168 and Sids13 and their hybrid (Giza168 xSids13) were the most drought tolerant genotypes, while the parent Misr1 was the most sensitive to drought.

A set of ISSR markers for drought tolerance and (BSA) approach were used in molecular studies. Five tolerant molecular markers appeared in positive molecular markers for drought tolerance.

The Effects of Biodegradation on Asphaltenes Bound Biomarkers

Jamilu
Department of Chemistry, Sokoto state University, Sokoto, Nigeria
jamiluusman2020@gmail.com

ABSTRACT

Two oils were separated using Thin Layer Chromatography (TLC) and initial characterisation of the aliphatic and aromatic fraction was carried out by GC and GC/MS analysis. Asphaltenes from the crude oil were then extracted and subjected to ruthenium ion catalysed oxidation (RICO) in order to investigate the hydrocarbon and biomarkers occluded onto the asphaltenes. The asphaltene-bound hydrocarbons were compared with the maltene-derived hydrocarbon to evaluate the effect of biodegradation on asphaltene-bound biomarkers. The biodegraded maltene-derived hydrocarbons show depletion of n-alkanes, acyclic isoprenoids and alteration to sterane and hopane biomarkers. However, asphaltene-bound hydrocarbon shows n-alkanoic acid distribution from C7 – C34 which corresponds to n-alkanes suggesting...
protection of the hydrocarbons from biodegradation. The steranoic acids of non-degraded sample show similar distribution to corresponding steranes in the maltenes. This is different for biodegraded samples which have different distribution of steranoic acids with the steranes counterparts in the maltenes suggesting secondary oil charging from different source. Hopanoic acids distribution for both samples show similar distribution as compared to their hopane counterparts in maltenes. The distribution of asphaltene-bound biomarkers is suggested to represent two oil samples which is protected from biodegradation as a result of being occluded onto asphaltenes. This result shows the possibility of using asphaltene-bound biomarkers as an alternative oil-source correlation technique especially in biodegraded oil samples where the biomarkers from the maltenes fraction have been altered.

Seong-Hwan Kim
GICIRCST1607055

Method of Recovery of Deleted Records in a PostgreSQL Database
Seong-Hwan Kim
Linux Data System Corporation, South Korea

ABSTRACT
As more and more information is being handled in enterprise IT environments, database utility has been increasing accordingly. With the increased use of databases, there is a high possibility that database records will need to be utilized as evidence, as in the case of IT-related crimes. There has been a growing need for the recovery of both maliciously deleted and ordinarily deleted records in order to use database records as legal evidence. Research on the methods of record restoration has only been carried out in regard to certain database management systems (DBMS). However, even though it is open source, research on the record restoration method for PostgreSQL has not been performed. This paper recommends recovery methods for records deleted from PostgreSQL. When recovering deleted records, PostgreSQL data files, which contain a history of deleted records, are required. Also, a Hex editor is used, which is able to check the contents of data files. One can analyze each record’s header information by opening PostgreSQL data files with a Hex editor. Then, the analyzed header information from the records is checked. If it is deemed that there are deleted records, they can be extracted for recovery. If VACUUM, which is a record cleanup program offered by PostgreSQL, has been used for deletion, the records cannot be restored.

Keywords: PostgreSQL, Record, Delete, Recovery, Forensic

Jahangeer
GICIRCST1607056

Modelling of water flow through subsurface in semi-arid regions of Rajasthan, INDIA

Jahangeer
Research Scholar, Department of Hydrology, Indian Institute of Technology Roorkee, INDIA

Pankaj Kumar Gupta
Research Scholar, Department of Hydrology, Indian Institute of Technology Roorkee, INDIA

Brijesh K Yadav
Associate Professor, Department of Hydrology, Indian Institute of Technology Roorkee, INDIA
ABSTRACT
In the developing countries, the industrialization, over-exploration of natural resources, increasing demographical pressure, and emerging pollution causes depletion of water resources. In India, groundwater availability and management is the most important and emerging issues to fulfil safe drinking and irrigation water requirement. For the fulfillment of these requirements, there must be the vulnerability assessment and the potential pollution risk assessment of the area. Therefore, the aim of this study is to provide the overall vulnerability scenarios and the potential vulnerable area map using the quantitative, qualitative and socio-economic assessment to groundwater in selected district of Rajasthan. Vulnerability maps of the study area were developed based on integration of all three assessment approaches. The quantitative assessment gives the net recharge volume, runoff volume using the water balance methods and SCN-CN methods respectively. Similarly, groundwater samples were collected and different laboratory analysis conducted for the measurement of the hydro chemical variables for the qualitative assessment, which gives the groundwater qualities scenario of the area. The study showed the entire area needs the sustainable planning, policy, and the technological approaches for the sustainable groundwater resources development.

Keywords: Developing countries, Groundwater Resources, Vulnerability assessment, Semi-arid region.

Forces and Stiffness of the Water Droplet Bouncing Phenomenon

Paul Kim
Korea International School

ABSTRACT
When a water droplet is dropped on a solution, one would normally expect them to coalesce immediately and not survive. However, under the correct circumstances, the water droplet will not coalesce immediately but survive for a short period time before coalescing. In this paper, this phenomenon will be studied when a water droplet or a liquid ball with radius less than 1.0 mm are dropped on the surface of the sodium dodecyl sulfate solution at varying concentrations, height, and droplet radius. The effects of change that are primarily studied in this paper is the change in acceleration and stiffness as the concentration of the solution affects the forces in the water and as the height and droplet radius affect the depth of the deformation.

For the analysis of the experimental data, a camera and a video analysis program was used to analyze the motions of the water droplet. Also in this paper, the major forces that are applied to the water droplet are forces such as surface tension and buoyancy. The whole phenomenon's motion was simplified through taking a mechanical perspective and was seen as a linear spring instead of a fluid dynamics as it would give a simpler and different approach. And with this approach we calculated the effective average spring constant of the solution surface which depends on the depth of deformation, force given by surface tension of the surface and the force given by buoyancy.
Propagated of Circularly Crested Thermoelastic Waves in A Homogeneous
Isotropic Cylindrical Plate Subjected to Stress Free And Isothermal Conditions
Using Different Theories

Devinder Singh
Department of Applied Sciences (Mathematics) Guru Nanak Dev Engrg.College
Ludhiana (Punjab) INDIA, 141006
despatheria@yahoo.com

ABSTRACT
The propagation of circularly crested thermoelastic waves in a homogeneous
cylindrical isotropic plate subjected to stress free and isothermal conditions is
investigated in the context of (CT), (LS), (GL), and (GN) theories of thermoelasticity.
The secular equation for the circular plate in closed form and isolated mathematical
conditions for symmetric and skew symmetric wave mode propagation in completely
separate terms are derived. It is shown that the motion for SH modes gets decoupled
from rest of the motion and remain unaffected due to thermomechancial coupling
and thermal relaxation effects. The phase velocities for SH modes have also been
obtained. It is noticed that the rest of the motion of circular crested waves is again
governed by the Rayleigh-Lamb type secular equations. The secular equations for
these plate and Lame modes are also obtained. The results for coupled and
uncoupled theories of thermoelasticity have been obtained as particular cases from
the derived secular equations. At short wave length limits, the secular equations for
symmetric and skew symmetric waves in stress free insulated and isothermal circular
plate reduces to Rayleigh surface wave frequency equations.

KEYWORDS: Thermoelasticity, Symmetric, Secular equations, isothermal,
wavelength

On the Exploratory Approach to Identifying Weak Signals: Assessing Potential
Impacts of Signals in Textual Data

Yongtae Park
Jieun Kim
Seoul National University, KOREA

ABSTRACT
Recently, the significance of detecting weak signals has been increased in technology
foresight. Weak signals are defined as the early signs of prospective phenomena that
appear to be noise at present but have high potential impact in the long term due to
emerging technologies and discontinuous innovations. Among others, textual online
data are the primary source of futuristic information. However, intrinsically,
identification of weak signals from huge amount of future data is by no means facile.
Particularly, defining and measuring the potential impact of weak signal is subject to
fundamental difficulties. In response, this research proposes an exploratory
approach that evaluates various types of the potential impact of signals in textual
technological information. Specifically, the framework consists of three major
modules: input collector, throughput transformer, and output generator. First,
through data mining tools, evolutionary impact, relational impact, and
transformational impact information are retrieved from textual data. Then, by
applying visualization algorithms, such visual outputs as keyword visibility/diffusion
map, keyword network map, and keyword novelty map are drawn. Finally, by doing
so, textual/quantitative information is converted into innovative knowledge for
Susceptibility of TCF7L2 Variation Increases the Risk of Diabetes Type II in Pakistani Ethnicities

Afira Waqar
Govt. College University, Lahore, Pakistan
afira6@hotmail.com

Bushra Chaudhry
Ikram-ul-Haq

ABSTRACT

Transcription factor 7-like 2 (TCF7L2) is one of the most susceptible genes for the occurrence of type-2 diabetes (T2D). A common SNP rs12255372 of TCF7L2 is associated with T2D in Europeans however; it showed inconsistent association in previously reported South Asians. Our aim was to investigate the association between TCF7L2 polymorphism rs12255372 (G/T) with T2D in Pakistani population. Subjects were recruited from Karachi and Lahore based population (n=1750), consisted of diabetic cases (n=800) and controls (n=950). DNA was extracted and T-ARMS PCR was performed for genotyping and the collected data was statistically analyzed in SPSS version 20.

Genotype frequencies analysis was 21.8%, 60.3% and 17.9% and 13.2%, 71.4% and 15.4% for GG, GT and TT in cases and controls, respectively. All subjects fall in HWE. Binary logistic regression analysis showed that in cases, GT genotype is significantly associated with T2D (95% OR=2.1; 1.02-4.2, p=0.04), age group (40-70, OR: 1.52; 0.78-2.93), Obese BMI (>25kg/m2 OR: 1. 26; 0. 52-3.06,) and female gender (OR: 1.77; 0.95-3.32). Frequency of G and T allele in total population was 17.3% and 82.7%. (X2=254, P=3.96E-57). It was significant in both genders. The minor T allele was found significantly associated with T2D (X2=15.58, p=8.30E-5).

We observed a strong relationship of age 20-70 years (β=0.432), female gender (β=-0.745) and BMI ((≥25Kg/m2; β=0.73) in diabetic cases per single allele. Presence of one copy of T allele increase the 2.9 folds higher risk for developing diabetes and two copies of T allele showed 16.5 fold higher risk of diabetes in females in adjusted analysis.

Key Words: TCF7L2, T2D, SNP

SYNTHESIS, MODELING AND PHOTOVOLTAIC PROPERTIES OF A BENZOTHIAZOLE BASED MOLECULE FOR DYE-SENSITIZED SOLAR CELLS

Syed Afaq Ali Shah
Faculty of Engineering Sciences, Ghulam Ishaq Khan, Institute of Engineering Sciences and Technology, Topi, District Swabi, Khyber Pakhtunkhwa 23640, Pakistan
hsayyad62@gmail.com
sayyad@giki.edu.pk

Muhammad Hassan Sayyad
Faculty of Engineering Sciences, Ghulam Ishaq Khan, Institute of Engineering Sciences and Technology, Topi, District Swabi, Khyber Pakhtunkhwa 23640, Pakistan

6th International Conference on Envirotech, Cleantech and Greentech (ECG), 20-21 October 2016, Hong Kong
REGAL ORIENTAL HOTEL, 30-38 SA PO ROAD, KOWLOON CITY, HONG KONG
ABSTRACT
A benzothiadiazole based solution-processable organic dye D1 (N4-Phenyl-
N4,N7,N7-trf[4-[(2-ethoxycarbonyl)- 2-cyanovinyl]phenyl]benzo[c][1,2,5]thiadiazole-
4,7-diamine) was synthesized. Dye-sensitized solar cells (DSSCs) were fabricated
based on D1 and a commercially available benzothiadiazole based RK1 dye. The
photovoltaic parameters of these cells were studied under simulated
AM 1.5 illumination (100 mW cm^-2). The DSSC sensitized by RK1 dye provided a
power conversion efficiency of 5.7 % with high values of short-circuit photocurrent
density, open-circuit photovoltage, and fill factor. Under the same conditions, the cell
sensitized with D1 dye showed a very poor performance due to the lower values of
short-circuit photocurrent density and open-circuit photovoltage. In order to provide
insight into poor performance of the DSSC sensitized by D1, molecular structure of
D1 was analyzed by density functional theory. Its frontier orbitals were calculated to
investigate effectiveness of charge transport and reasons of the poor performance.
This computational study revealed that the photovoltaic performance of
the benzothiadiazole based DSSCs can be enhanced significantly by inserting a
phenyl ring between the benzothiadiazole unit and the anchoring group.

YASMIN RAZA
GICICRST1607063

ABSTRACT
Most of the high grade geothermal resources of the world are found within seismic
belts of weak crustal plate margins and centers or volcanic activity. Similarly,
geotectonic framework of Pakistan directs towards a region which poses a
commercially exploitable sources of geothermal prospects of energy.
Presence of alteration zones and fumaroles, hot springs as well as Quaternary
volcanism are all indication of good prospects.

YASMIN RAZA
Geological Survey of Pakistan
yasmeen_raza2211@hotmail.com
The Southern most Indus basin of Pakistan are lie in the Geo-Pressurized Thermal zone system. Geothermal activities are thermal spring, geysers such as in Karachi and Dadu area, as well as abnormal high temperature in drilling oil/gas wells, is due to the great thickness and geo-pressured water of sedimentary basins. The presence of two thermal springs at Mangho Pir and Karsaz, Karachi specify a Cl - HCO³ and Cl-SO₄ types of water chemistry. Reservoir temperature also reported comparatively low by the Silica geothermometers due to mixing of sea water and rock water interaction in subsurface. However, geochemistry of thermal water indicates further to conduct a detailed survey of the area for exploring future prospects of geothermal resources.

KEY WORDS: Geothermal water, Reservoir temperature, Geothermometers, Lower Indus basin

EFFECTS OF HIGH SOIL CO2 DUE TO THE LEAKAGE FROM CCS SITE ON PLANT GROWTH

Wenmei He
Department of Environmental Science and Engineering, Kyung Hee University,
South Korea
wenmei@khu.ac.kr

Youjin Kim
Department of Environmental Science and Engineering, Kyung Hee University,
South Korea
ujin@khu.ac.kr

Mohammad Moonis
Department of Environmental Science and Engineering, Kyung Hee University,
South Korea
moonis.mohammad@gmail.com

Haegeun Chung
Department of Environmental Engineering, Konkuk University, South Korea
hchung@konkuk.ac.kr

Kyung Hee Shin
Environmental Assessment Group, Korea Environment Institute, South Korea
khshin@khu.ac.kr

Gayoung Yoo
Department of Environmental Science and Engineering, Kyung Hee University,
South Korea
gayoo@khu.ac.kr

ABSTRACT

It is important to understand the potential impacts of CO2 leakage from carbon capture and storage (CCS), because CCS would be widely used in the future to reduce CO2 emission. We set up the greenhouse experiment to investigate the plant response to high soil CO2 due to the leakage. Grapes (Vitis coignetiae) were planted in three treatments which included pure CO2 injection (CG), pure N2 injection (NG) and no injection control (BG). NG was used to differentiate the effects of O2 depletion from CO2 enrichment in the CG. Soil CO2 concentration were 41-65% at 5-
15 cm depth in the CG. And soil O2 concentration were 7-14% at 5-15 cm depth in the CG and NG. Soil pH were 6.9, 7.4 and 7.3 in the CG, NG and BG, respectively. The water uptake of root and chlorophyll a content were lower in the CG than other treatments. And after 32 days, plants turned yellow, red and dry in the CG but normally grown in the BG and NG. Plant biomass, shoot water and root starch content were significantly lower in the CG than other treatments. High soil CO2 combined with low O2 was more toxic to plants compared to low O2 only. We propose a mechanism of CO2 toxicity to plants as follows: 1) Effects of high soil CO2 on plants start from the root cells of which intercellular pH gets lower and which send a signal to the leaf to close stomata. 2) Due to the closed stomata, water and nutrients are not transported from the soil to the leaves, and it will result in low photosynthesis. 3) Although plants try to compensate the lower photosynthates by solubilizing starch, plants will finally consume the storage and fail to grow.

Keywords: Carbon capture and storage, impact assessment, CO2 toxicity, plant growth

Sunyoung Bua
GICICRST1607066
DETECTION TECHNIQUE FOR SELECTING ADAPTIVE STEP SIZE IN THE PARAREAL ALGORITHM

Sunyoung Bua
aHongik University, A407, sejong campus Hongik University, Sejong, 30016, South Korea
syboo@hongik.ac.kr

ABSTRACT
A practical strategy is constructed to select an adaptive step size for solving stiff initial value problem in the parareal framework. For this, we propose a technique to detect stiffness of a given system and its solutions since the time step size can be chosen according to the extent of stiffness. Numerical experiments demonstrate the theoretical results.

Keyword: Stiffness, Initial value problems, parareal method

Chang-Ho Hyun
GICICRST1607064
HIFU output control of Beauty Care Systems for The Prevention of Overheating

Jongseok Kim
IRS Lab., Dept. of Electrical Electronic and Control Engineering, Kongju National University, Republic of Korea
jskim@daihan-biomedical.com

Chang-Ho Hyun
IRS Lab., Dept. of Electrical Electronic and Control Engineering, Kongju National University, Republic of Korea
hyunch@kongju.ac.kr

ABSTRACT
This paper proposes Practical HIFU output control method in order to prevent the overheating of cartridges in HIFU beauty care systems. HIFU has been widely adapted for skin care such as tightening. It is generated by HIFU transducer generates. HIFU transducer is a main component to decide the durability of HIFU beauty care systems. One of major causes to harm the durability is the overheating of the HIFU transducer. Hence, as the practical method to prevent the overheating of the HIFU transducer, the control method for duty ratio of turning it on or off is
proposed. The proposed method has the effect not only to maintain the same power as the conventional method in HIFU output but also to reduce the time that HIFU transducer heats itself. Since the HIFU transducer stays at the turn-off status, the overheating chance is reduced. This is verified by an actual experiment and acquired data.

Keywords: HIFU, durability, duty ratio, output control, overheating

LISTENERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Contact ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoaib Kasehgar Mohammadi</td>
<td>Islamic Azad University, Dariun, Iran</td>
<td>GICECG1607051</td>
</tr>
<tr>
<td>Ibrahim Roke Sesay</td>
<td>Help the Helpless, Sierra Leone</td>
<td>GICECG1607054</td>
</tr>
<tr>
<td>Abdul Sesay</td>
<td>Help the Helpless, Sierra Leone</td>
<td>GICECG1607055</td>
</tr>
<tr>
<td>Fatmata Binta Bah</td>
<td>Help the Helpless, Sierra Leone</td>
<td>GICECG1607056</td>
</tr>
<tr>
<td>Harvey Tan Ong</td>
<td>De La Salle University, Philosophy of Doctorate in Business</td>
<td>GICICRST1607060</td>
</tr>
<tr>
<td>Sin Bing Kwong Alan</td>
<td>Project Manager, PMP Accenture Consulting Melbourne, Australia</td>
<td>GICECG1607058</td>
</tr>
<tr>
<td>Sin Bing Kwong Alan</td>
<td>Project Manager, PMP Accenture Consulting Melbourne, Australia</td>
<td>GICICRST1607067</td>
</tr>
</tbody>
</table>

List of Conferences

http://www.wasrti.org/conference.php

» 6th International Conference on Envirotech, Cleantech and Greentech (ECG),
20-21 October 2016, Hong Kong
» 6th International Conference on Researches in Science and Technology (ICRST), 20-21 October 2016, Hong Kong

» 7th International Conference on Envirotech, Cleantech and Greentech (ECG), 10-11 Nov 2016, Singapore

» 7th International Conference on Researches in Science and Technology (ICRST), 10-11 Nov 2016, Singapore

» 8th International Conference on Envirotech, Cleantech and Greentech (ECG), 20-21 Dec 2016, Dubai

» 8th International Conference on Researches in Science and Technology (ICRST), 20-21 Dec 2016, Dubai

» 9th International Conference on Envirotech, Cleantech and Greentech (ECG), 29-30 Dec 2016, Bangkok, Thailand

» 9th International Conference on Researches in Science and Technology (ICRST), 29-30 Dec 2016, Bangkok, Thailand

» 10th International Conference on Envirotech, Cleantech and Greentech (ECG), 21-22 Feb 2017, Dubai

» 10th International Conference on Researches in Science and Technology (ICRST), 21-22 Feb 2017, Dubai
» 12th International Conference on Envirotech, Cleantech and Greentech (ECG),
08-09 Dec 2016, Kuala Lumpur

» 12th International Conference on Researches in Science and Technology
(ICRST), 08-09 Dec 2016, Kuala Lumpur

» 13th International Conference on Envirotech, Cleantech and Greentech (ECG),
25-26 May 2017, Lisbon

» 13th International Conference on Researches in Science and Technology
(ICRST), 25-26 May 2017, Lisbon

» 14th International Conference on Envirotech, Cleantech and Greentech (ECG),
16-17 June 2017, Singapore

» 14th International Conference on Researches in Science and Technology
(ICRST), 16-17 June 2017, Singapore

» 15th International Conference on Envirotech, Cleantech and Greentech (ECG),
23-24 June 2017, Kuala Lumpur

» 15th International Conference on Researches in Science and Technology
(ICRST), 23-24 June 2017, Kuala Lumpur

» 16th International Conference on Envirotech, Cleantech & Greentech (ECG), 14-
15 July 2017, Bali, Indonesia
» 16th International Conference on Researches in Science & Technology (ICRST),
14-15 July 2017, Bali, Indonesia

» 17th International Conference on Envirotech, Cleantech&Greentech (ECG), 21-22 July 2017, Bangkok, Thailand

» 17th International Conference on Researches in Science & Technology (ICRST),
21-22 July 2017, Bangkok, Thailand

» 18th International Conference on Envirotech, Cleantech&Greentech (ECG), 09-10 June 2017, Rome, Italy

» 18th International Conference on Researches in Science & Technology (ICRST),
09-10 June 2017, Rome, Italy